

Cloud Computing: Finding the Silver Lining

Steve Hanna, Juniper Networks

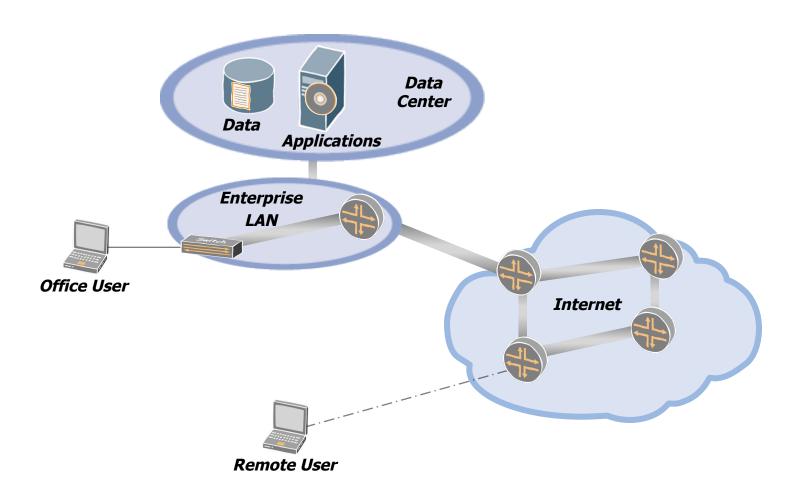
Agenda

- What is Cloud Computing?
- Security Analysis of Cloud Computing
- Conclusions

Agenda

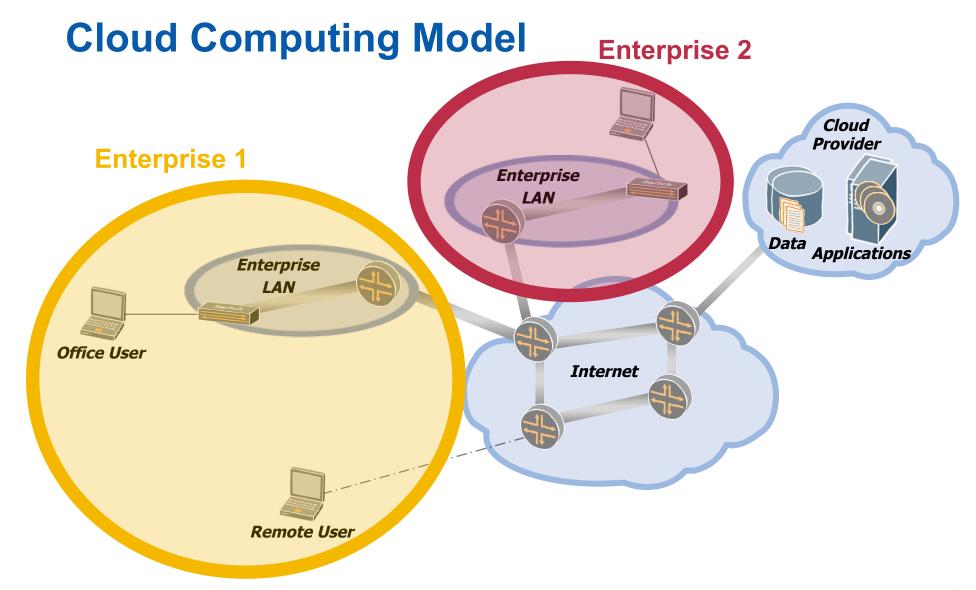
- What is Cloud Computing?
- Security Analysis of Cloud Computing
- Conclusions

Cloud Computing Defined


- Dynamically scalable shared resources accessed over a network
 - Only pay for what you use
 - Shared internally or with other customers
 - Resources = storage, computing, services, etc.
 - Internal network or Internet

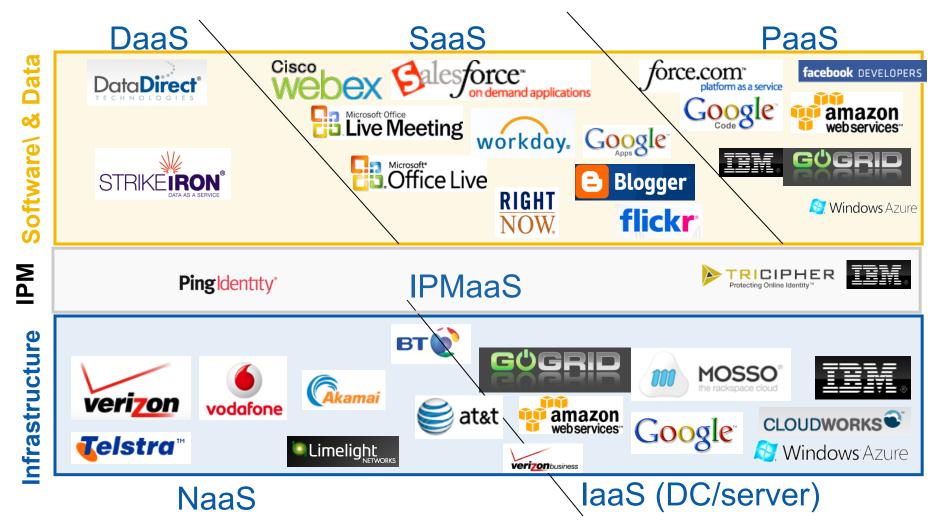
Notes

- Similar to Timesharing
 - Rent IT resources vs. buy
- New term definition still being developed



Conventional Data Center

- 5



Many Flavors of Cloud Computing

- SaaS Software as a Service
 - Network-hosted application
- DaaS Data as a Service
 - Customer queries against provider's database
- PaaS- Platform as a Service
 - Network-hosted software development platform
- laaS Infrastructure as a Service
 - Provider hosts customer VMs or provides network storage
- IPMaaS Identity and Policy Management as a Service
 - Provider manages identity and/or access control policy for customer
- NaaS Network as a Service
 - Provider offers virtualized networks (e.g. VPNs)

Cloud Computing Providers

Juniper® Cloud Computing Pros and Cons

Pros

Reduced costs

Resource sharing is more efficient

Management moves to cloud provider

Consumption based cost

Faster time to roll out new services

Dynamic resource availability for crunch periods

Compliance/regulatory laws mandate on-site ownership of data

Security and privacy Latency & bandwidth guarantees

Absence of robust SLAs

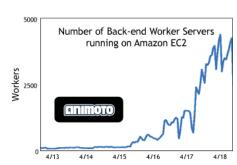
Uncertainty around interoperability, portability & lock in

Availability & reliability

Inhibitors

Who's using Clouds today?

Example: Mogulus


- Mogulus is a live broadcast platform on the internet. (cloud customer)
 - Producers can use the Mogulus browser-based Studio application to create LIVE, scheduled and on-demand internet television to broadcast anywhere on the web through a single player widget.
- Mogulus is entirely hosted on cloud (cloud provider)
- On Election night Mogulus ramped to:
 - 87000 videos @500kbps = 43.5 Gbps
 - http://www.mogulus.com

Example: Animoto

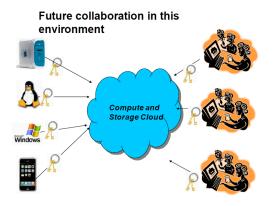
- Animoto is a video rendering & production house with service available over the Internet (cloud customer)
 - With their patent-pending technology and high-end motion design, each video is a fully customized orchestration of user-selected images and music in several formats, including DVD.
- Animoto is entirely hosted on cloud (cloud provider)
- Released Facebook App: users were able to easily render their photos into MTV like videos
 - Ramped from 25,000 users to 250,000 users in three days
 - Signing up 20,000 new users per hour at peak
 - Went from 50 to 3500 servers in 5 days
 - Two weeks later scaled back to 100 servers
 - http://www.animoto.com

Example: New York Times

- Timesmachine is a news archive of the NY Times available in pdf over the Internet to newspaper subscribers (cloud customer)
- Timesmachine is entirely hosted on cloud (cloud provider)
- Timesmachine needed infrastructure to host several terabits of data
 - Internal IT rejected due to cost
 - Business owners got the data up on cloud for \$50 over one weekend
 - http://timesmachine.nytimes.com

Welcome to Times Machine

Browse 70 years of New York Times archives



Example: Eli Lilly

- Eli Lilly is the 10th largest pharmaceutical company in the world (cloud customer)
- Moved entire R&D environment to cloud (cloud provider)
- Results:
 - Reduced costs
 - Global access to R&D applications
 - Rapid transition due to VM hosting
 - Time to deliver new services greatly reduced:
 - New server: 7.5 weeks down to 3 minutes
 - New collaboration: 8 weeks down to 5 minutes
 - 64 node linux cluster: 12 weeks down to 5 minutes

Who's using Clouds today?

Startups & Small businesses

- Can use clouds for everything
 - SaaS, laaS, collaboration services, online presence

Mid-Size Enterprises

- Can use clouds for many things
 - Compute cycles for R&D projects, online collaboration, partner integration, social networking, new business tools

Large Enterprises

- More likely to have hybrid models where they keep some things in house
 - On premises data for legal and risk management reasons

Agenda

- What is Cloud Computing?
- Security Analysis of Cloud Computing
- Conclusions

Information Security Risk Management Process (ISO 27005)

- Establish Context
- Risk Assessment
 - Identify Rights
 - Identry Asset
 - Identify Threats
 - Identify Existing Controls
 - Identify Vulnerabilities
 - Identify Consequences
 - Estimate Risks
 - Evalua e Risks
- Develop Risk Treatment Plan
 - Reduce, Retain, Avoid, or Transfer Riks
- Risk Acceptance
- Implement Rick Treatment Plan
- Monitor and Review Risks

Streamlined Security Analysis Process

Identify Assets

- Which assets are we trying to protect?
- What properties of these assets must be maintained?

Identify Threats

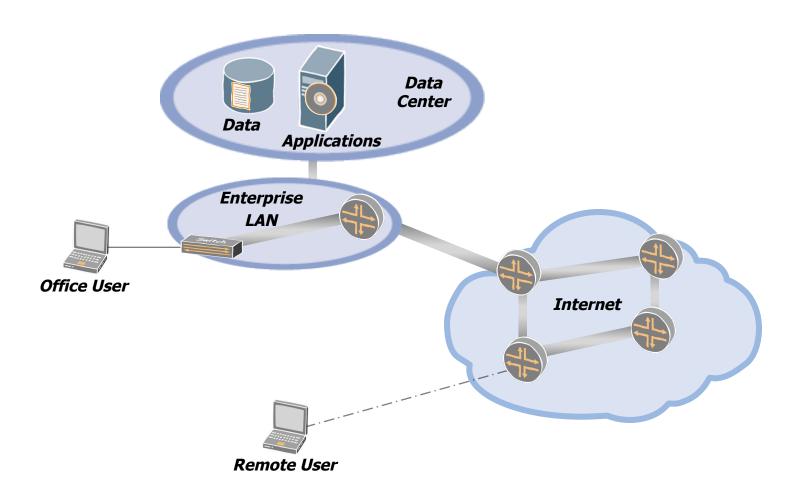
- What attacks can be mounted?
- What other threats are there (natural disasters, etc.)?

Identify Countermeasures

How can we counter those attacks?

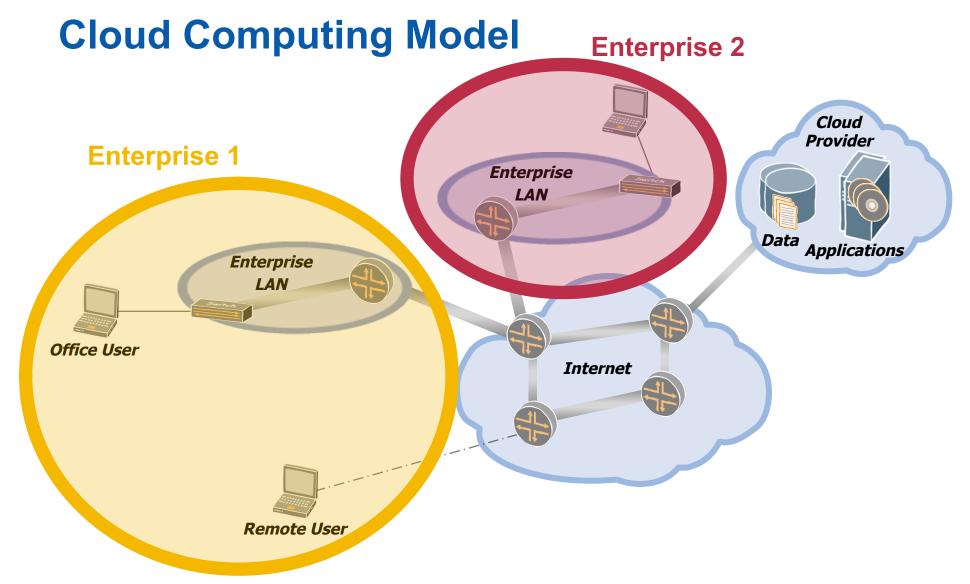
Appropriate for Organization-Independent Analysis

We have no organizational context or policies



Identify Assets

19



Conventional Data Center

20

Identify Assets

Customer Data

Customer Applications

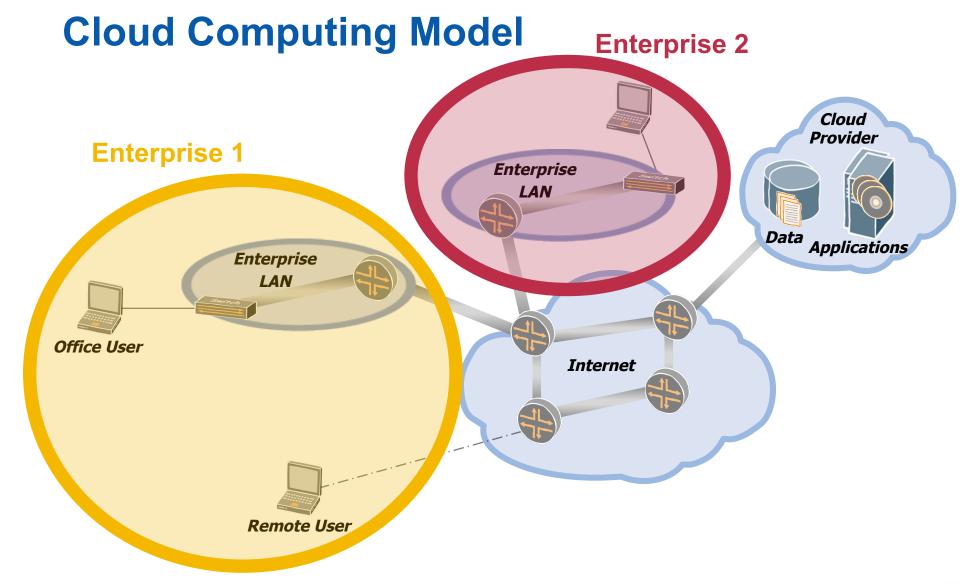
Client Computing Devices

Information Security Principles (Triad)

- CIA

- Confidentiality
 - Prevent unauthorized disclosure
- Integrity
 - Preserve information integrity
- Availability
 - Ensure information is available when needed

Identify Assets & Principles


- Customer Data
 - Confidentiality, integrity, and availability
- Customer Applications
 - Confidentiality, integrity, and availability
- Client Computing Devices
 - Confidentiality, integrity, and availability

Identify Threats

25

Identify Threats

- Failures in Provider Security
- Attacks by Other Customers
- Availability and Reliability Issues
- Legal and Regulatory Issues
- Perimeter Security Model Broken
- Integrating Provider and Customer Security Systems

Failures in Provider Security

Explanation

- Provider controls servers, network, etc.
- Customer must trust provider's security
- Failures may violate CIA principles

Countermeasures

Verify and monitor provider's security

Notes

- Outside verification may suffice
- For SMB, provider security may exceed customer security

Attacks by Other Customers

Threats

- Provider resources shared with untrusted parties
 - CPU, storage, network
- Customer data and applications must be separated
- Failures will violate CIA principles

Countermeasures

- Hypervisors for compute separation
- MPLS, VPNs, VLANs, firewalls for network separation
- Cryptography (strong)
- Application-layer separation (less strong)

Availability and Reliability Issues

Threats

- Clouds may be less available than in-house IT
 - Complexity increases chance of failure
 - Clouds are prominent attack targets
 - Internet reliability is spotty
 - Shared resources may provide attack vectors
 - BUT cloud providers focus on availability

Countermeasures

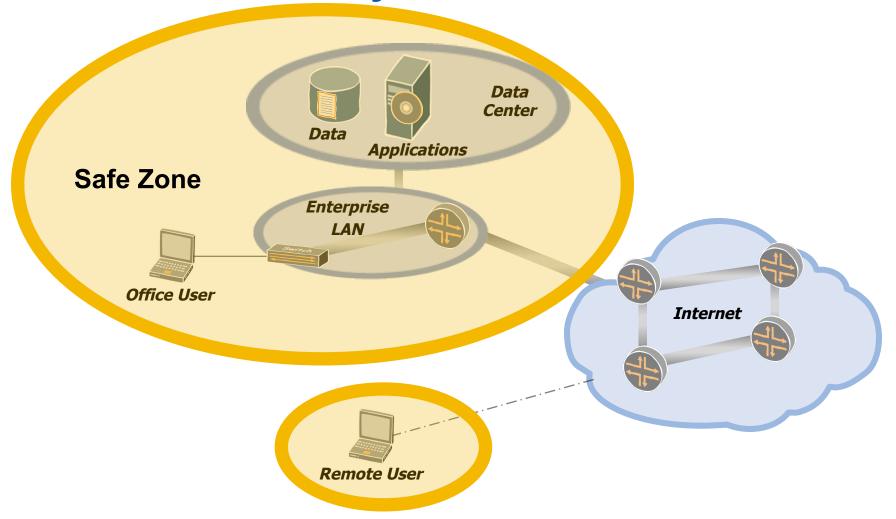
- Evaluate provider measures to ensure availability
- Monitor availability carefully
- Plan for downtime
- Use public clouds for less essential applications

Legal and Regulatory Issues

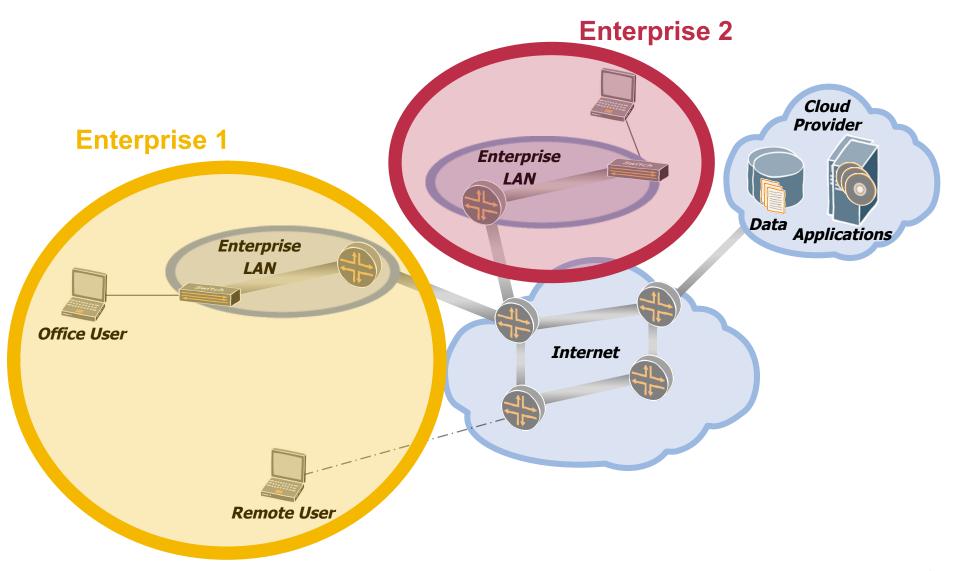
Threats

- Laws and regulations may prevent cloud computing
 - Requirements to retain control
 - Certification requirements not met by provider
 - Geographical limitations EU Data Privacy
- New locations may trigger new laws and regulations

Countermeasures


- Evaluate legal issues
- Require provider compliance with laws and regulations
- Restrict geography as needed

Perimeter Security Model Broken



Perimeter Security Model

Perimeter Security with Cloud Computing?

Perimeter Security Model Broken

Threats

- Including the cloud in your perimeter
 - Lets attackers inside the perimeter
 - Prevents mobile users from accessing the cloud directly
- Not including the cloud in your perimeter
 - Essential services aren't trusted
 - No access controls on cloud

Countermeasures

Drop the perimeter model!

Integrating Provider and Customer Security

Threat

- Disconnected provider and customer security systems
 - Fired employee retains access to cloud
 - Misbehavior in cloud not reported to customer

Countermeasures

- At least, integrate identity management
 - Consistent access controls
- Better, integrate monitoring and notifications

Notes

Can use SAML, LDAP, RADIUS, XACML, IF-MAP, etc.

Agenda

- What is Cloud Computing?
- Security Analysis of Cloud Computing
- Conclusions

Bottom Line on Cloud Computing Security

- Engage in full risk management process for each case
- For small and medium organizations
 - Cloud security may be a big improvement!
 - Cost savings may be large (economies of scale)
- For large organizations
 - Already have large, secure data centers
 - Main sweet spots:
 - Elastic services
 - Internet-facing services
- Employ countermeasures listed above

Security Analysis Skills Reviewed Today

Information Security Risk Management Process

- Variations used throughout IT industry
 - ISO 27005, NIST SP 800-30, etc.
- Requires thorough knowledge of threats and controls
- Bread and butter of InfoSec Learn it!
- Time-consuming but not difficult

Streamlined Security Analysis Process

- Many variations
 - RFC 3552, etc.
- Requires thorough knowledge of threats and controls
- Useful for organization-independent analysis
- Practice this on any RFC or other standard
- Become able to do it in 10 minutes

Juniper **Sour** Net_m